2 Definitions

A discrete probability distribution function is a probability function that has a discrete domain. This means the domain either has a finite number of elements, or it is countably infinite. The set of all integers ( $ \mathbb{I}$ ) is infinite, but it is countably infinite. On the other hand, the set of all real numbers, ( $ \mathbb{R}$ ), is not countably infinite.



Subsections

Copyright © 2006-10-09 by Tak Auyeung